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 A B S T R A C T

Modeling the resilience of hospital Power-Water-Firefighting-Space (PWFS) nexus systems is 
a complex, dynamic, and nonlinear challenge characterized by high uncertainty. Existing 
methods, mainly agent-based and network-based models, face difficulties in balancing detailed 
component-level behaviors with broader system-level interdependencies and neglect the impact 
of external disruptions, such as surges in service demand during the COVID-19 pandemic, on 
hospital PWFS system resilience. To address this, the study proposes an enhanced cellular 
automata (CA)-based framework for simulating hospital PWFS system resilience. The PWFS 
system is modeled as a seven-tuple CA, incorporating cell structure, state, space, neighborhood, 
transition rules, and time, facilitating the integration of micro-level component behavior 
with macro-level interdependencies. A set of resilience metrics, including robustness, rapidity, 
performance loss, and an integrated resilience index, are introduced, based on the system 
performance curve, which includes normality, connectivity, resource transfer efficiency, and 
space functionality. The model enables scalable, polynomial-time simulations of cascading 
failures, resource redistribution, and spatial–temporal recovery across interconnected PWFS 
subsystems. A real-world outpatient building case study demonstrates the applicability and 
validity of the enhanced CA model. The findings emphasize the importance of modeling 
intra-system interdependencies and provide actionable insights for infrastructure design and 
emergency preparedness. Overall, the enhanced CA framework offers a systematic, scalable, 
and computationally efficient approach to resilience assessment, bridging theoretical modeling 
with practical infrastructure planning.

. Introduction

In high-risk society, healthcare facilities face constant threats from extreme events such as severe weather, epidemics, and 
onflicts [1]. As critical emergency infrastructure, hospitals must maintain and enhance their functionality to ensure uninterrupted 
ealthcare services [2,3]. Consequently, the concept of resilience has emerged in engineering to address challenges posed by various 
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disruptions [4]. Many studies in engineering define resilience as the ability of system to resist, absorb, and recover quickly from 
disturbances [5]. It is clear that an ability of hospital to operate during disruptions relies heavily on essential lifeline systems, such as 
power, water supply, and firefighting systems [6]. These systems are not independent but intricately interconnected, which increases 
the vulnerability of hospital, even a minor issue could trigger cascading failures across the entire system [7,8]. Moreover, functional 
units within the hospital, such as admission rooms, surgery rooms, and wards, act as the bridge between lifeline systems and end-
users, making the hospital a typical socio-technical system. Thus, this study focuses on the Power-Water-Firefighting-Space (PWFS) 
nexus system for resilience evaluation and evolutionary analysis, adopting a perspective based on the coupling of socio-technical 
systems.

Modeling the hospital PWFS system for resilience simulation is a complex, dynamic, and nonlinear problem, marked by 
significant uncertainty [9]. The quantitative assessment of hospital resilience, based on system performance, involves two main 
steps: system performance simulation and resilience metric extraction. Currently, hospital performance simulation primarily uses 
agent-based and network-based methods to model the temporal evolution of system performance, such as availability, productivity, 
and service quality, in response to external disturbances (i.e., resilience curve) [10,11]. The agent-based method models the behavior 
of individual components within the system, addressing cascading failures, self-adaptation, and decision-making, and captures 
emergent phenomena from the bottom up [12–14]. The network-based approach, on the other hand, represents the macro topology 
of system using network connections, making it a mainstream method for resilience simulation due to its intuitive representation 
and ease of computation [15,16]. Key features, such as robustness, rapidity, and performance loss, are then extracted from the 
resilience curve to characterize resilience [17]. However, agent-based models depend heavily on behavioral assumptions, where even 
small variations in agent behavior can significantly impact outcomes, making their validity contingent on these assumptions. Most 
network-based studies on hospital resilience focus on macro-level topologies between hospitals, often overlooking internal dynamics 
and component-level changes within individual hospitals. Furthermore, current research tends to emphasize service performance 
disruptions, neglecting the impact of external shocks, such as COVID-19 demand surges, on the resilience of critical hospital systems 
like power, water, and space utilization, which are essential for infrastructure design.

This study proposes a resilience simulation framework for the hospital PWFS nexus system, employing advanced cellular 
automata (CA) to assess its resilience. With the enhanced CA model, the PWFS system is modeled as a seven-tuple cellular 
automaton, based on a detailed analysis of its composition and operational dynamics. A set of performance metrics, considering 
system functionality and topology, is introduced, with the robustness, rapidity, performance loss, and an integrated indicator to 
evaluate the resilience of the PWFS system to external disturbances and its recovery capacity. The main contributions of this study 
are summarized as follows:

• Methodology: This study presents an enhanced seven-tuple CA model, comprising components of cell, cellular property, cellular 
space, cellular state, cellular neighborhood, transition rules, and time step, for evaluating the resilience of the PWFS system, 
which is a novel extension of the traditional CA model for PWFS system modeling. Unlike conventional ABM- and network-
based methods, the proposed enhanced CA model integrates macro-level interdependencies, captured in network-based models, 
and micro-level component behaviors, emphasized in agent-based models, offering a more comprehensive framework that 
combines the strengths of both approaches. Additionally, the multiplicative aggregated resilience measurement is comparable 
across scenarios and systems, with a proven linear sensitivity to performance aggregation.

• Practice: This study introduces the enhanced CA model, a scalable polynomial-time simulation framework for resilience 
evaluation, enabling effective modeling of complex systems under various conditions, making it well-suited for large-scale 
infrastructure resilience simulations. The case study further underscores the critical role of system interdependencies in 
resilience, offering valuable insights for the design of more robust and adaptable hospital infrastructure.

The remainder of this paper is organized as follows: Section 2 reviews the relevant literature. Section 3 introduces the enhanced 
CA-based method for the resilience assessment of the hospital PWFS system. Section 4 presents a case study of the NJHTCM 
outpatient building to demonstrate the proposed model, with model validation under the COVID-19 epidemic, various model settings, 
and comparisons with other methods. Section 5 offers conclusions and future research directions.

2. Literature review

Infrastructure resilience assessment is vital for improving infrastructure resilience. It can be divided into two primary types: 
qualitative and quantitative. This study focuses on quantitative assessment. Qualitative assessments often use conceptual frameworks 
to establish indicators for resilience evaluation, incorporating extensive knowledge and experience to conduct a quantitative analysis 
based on established theories such as 4Rs [18], PEOPLES [19], and DROP [20]. In contrast, quantitative resilience assessment 
involves extracting characteristic indicators from the time evolution curve of system performance after disturbance, reflecting the 
resilience level of the infrastructure [21]. Methods for measuring resilience curves emphasize rapidity, robustness, performance 
loss, and recovery capability [22]. However, challenges remain, particularly in developing standardized or universally applicable 
measures to quantify resilience across different hazards and environments [13]. This complicates comparisons between systems, 
especially those with interconnected dependencies, such as the PWFS system in this study.

The primary challenge in quantitatively assessing system performance resilience lies in developing effective modeling and 
simulation methods to accurately represent the evolution of system performance, such as availability, productivity, and ser-
vice quality, over time under external disturbances [23,24]. Specifically, quantifying resilience in socio-technical systems like 
hospitals presents a complex issue, involving the representation of interdependencies among subsystems and uncertainties in 
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disturbances [25]. This requires a modeling approach capable of simulating the nonlinear dynamic evolution of systems with coupled 
effects. Currently, hospital system performance modeling and simulation methods primarily include agent-based and network-
based approaches. The agent-based modeling (ABM) approach to hospital resilience focuses on individual-level behaviors rather 
than the overall system [26–28]. As a bottom-up method, it examines emergent system phenomena by simulating the autonomy, 
adaptation, and responses of individual agents [29]. This approach begins with individual behavior to analyze system behavior, 
aligning with the inherent dynamics of complex systems [30]. ABM has been applied across various hospital resilience areas, 
including evacuation planning [15], emergency medical response resilience [31,32], hospital-linked system resilience [33], and 
community resilience [34]. In network-based approaches, the critical facilities or infrastructures can be depicted as nodes, and their 
interdependencies as links in the network [35]. The modeling approach emphasizes the macro interdependence (e.g., topological 
structure and broadly-defined resources flow), which can be intuitively represented by the link of the network and analyzed 
through graph theory. Current performance simulation of hospital systems using network-based approaches primarily focuses on the 
resilience analysis of transportation networks created by multi-hospital casualty transfer points at the city level [17,31,36]. System 
resilience is typically evaluated by using a combination of network topology metrics (e.g., maximum connected subgraphs) [37], 
facility-oriented physical attribute metrics (e.g., facility accessibility) [16], and system performance metrics [38].

However, ABM relies on numerous behavioral assumptions, where small variations in agent behavior can lead to significant 
deviations in system outcomes. The validity and applicability of such models therefore hinge heavily on the accuracy of these 
assumptions [30]. On the other hand, most existing network-based studies on hospital resilience primarily focus on macro-level 
topological structures – often between multiple hospitals – while overlooking the internal dynamics and component-level functional 
changes within a single hospital system [39]. Moreover, much of the current research tends to concentrate solely on the impact of 
disruptions on healthcare service performance, neglecting how external shocks – particularly surges in demand for critical services, 
such as during the COVID-19 pandemic – affect the resilience of the hospital lifeline systems. Yet, these demand-driven disruptions 
can significantly influence the performance and recovery of interdependent systems such as power, water, and space utilization, 
offering crucial insights for designing more resilient hospital infrastructure. To address the limitations of existing approaches, this 
study proposes a CA-based simulation method that simultaneously considers macro-level interdependencies – captured in network-
based models – and micro-level component behaviors — emphasized in agent-based models. While agent-based models excel 
at representing autonomous actions of individual agents, they often depend heavily on behavioral assumptions. Network-based 
methods, though effective in illustrating system-wide topological structures, generally overlook dynamic functional changes within 
hospitals. In contrast, the proposed CA framework integrates both dimensions in a unified, rule-based structure, enabling dynamic 
simulation of cascading failures and performance degradation across interconnected subsystems in hospital PWFS networks.

3. Methodology

3.1. Preliminaries of Cellular automata

Cellular automata (CA) is initially conceived by Von Neumann during the 1950s [40]. CA represents a discrete-space and discrete-
time framework, wherein the spatial arrangement is depicted through a regular grid or latticed space, which may exist in one, two, 
or even higher dimensions. The traditional CA model mainly includes the elements of cellular space , cellular state , cellular 
neighborhood  , and cellular transition rule  , which can be represented by a four-tuple set [41]: 

 ∶= {, , ,}. (1)

 The individual cells possess discrete states, expressed either as binary values or continuous values, to represent distinct features or 
attributes. Through localized transition rules, each cell autonomously updates its state based on the states of its neighboring cells, 
whereby these transition rules can exhibit determinism or stochasticity. Synchronously, at each time step, all cells update their 
states collectively and compute the subsequent state for the succeeding time step. Despite the seemingly straightforward nature 
of these rules, CA effectively exhibits intricate behaviors, such as self-organization, pattern formation, as well as asynchronous and 
synchronous oscillations [42]. CA demonstrates highly adaptable system behavior by iteratively applying simple local transition rules 
and showcases a broad range of potential applications. It captures the complexity of dynamic systems by constructing individual 
features in a ‘‘bottom-up’’ manner. By dividing the system into cells and defining their states and transition rules, it becomes possible 
to simulate the evolution of the entire system. Additionally, in contrast to complex differential equation models, CA necessitates 
only uncomplicated local transition rules without the need for complex equation solving [43].

3.2. Cellular automata modeling of power-water-firefighting-space system

This section presents the enhanced CA model for modeling the PWFS system, with the key component being the interdependence 
characterization and the transition rules of facilities within the system. This study extends the traditional four-tuple CA model into 
a seven-tuple set for the PWFS system, including cell , cellular property  , cellular space , cellular state , cellular neighborhood  ,
transition rule  , and time step  , as shown in Eq.  (2) and Fig.  1. 

 ∶= {, ,, , , ,  }. (2)

The enhanced seven-tuple CA model builds upon the traditional four-tuple structure by adding new parameters to more effectively 
capture the dynamic evolution of the resource-driven PWFS system. This model is designed based on the operational practices 
3 
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Fig. 1. Enhanced CA model of the PWFS system.

of the PWFS system, ensuring that it accurately reflects real-world behavior and provides valuable insights for managing and 
optimizing the system in dynamic environments. Specifically, the seven-tuple structure incorporates factors such as resource flow, 
topological changes, and local unit state evolution, offering a more detailed representation of interactions and resource flows within 
the PWFS system. Compared to the traditional four-tuple model, this enhanced version allows for a more comprehensive simulation 
of system behavior, particularly in complex systems with interdependent resources and components. This representation is essential 
for understanding cascading effects, fault propagation, and the intricate dynamics of resource flows in such systems.

The following basic elements of the enhanced CA model for the PWFS system are first introduced, including cell, cellular property,
cellular state, and time step, which lay the groundwork for defining the rest components of the model. Let  ∶= {1,… , 𝐼}, indexed 
by 𝑖, and  ∶= {1,… , 𝐽}, indexed by 𝑗, denote the sets of cells and resources in the PWFS system, respectively.

Cell () represents the basic components of the PWFS system, categorized into power, water supply, firefighting, and functional 
space. Based on resource flow (i.e., power and water) within the system, cells are further classified as supply, transfer, and demand 
cells. The supply cells include the initial components that provide power or water, such as the municipal water system and distributed 
power generators. Transfer cells are responsible for resource conveyance, including distribution cabinets in the power system and 
pumps in the water supply system. Demand cells refer to the final components that consume resources, such as lighting fixtures in 
the power system and automatic sprinklers in the firefighting system.

Cellular property () represents the resource characteristics of cells, including resource type, function type, and the actual and 
maximum workload for specific resources. Let the number of cells in the enhanced CA model of the PWFS system be 𝑚 and the 
number of resource species be 𝑛. Thus, the cellular property 𝑃𝑖𝑗 of cell 𝑖 for resource 𝑗 is defined as: 

𝑃𝑖𝑗 = {𝑅𝑇𝑖𝑗 , 𝑅𝐹𝑇𝑖𝑗 , 𝑅𝐴𝑊 𝐿𝑖𝑗 , 𝑅𝑀𝑊𝐿𝑖𝑗}, ∀𝑖 ∈ , 𝑗 ∈  , (3)

where 𝑅𝑇𝑖𝑗 represents the type of resource possessed by cell 𝑖 (𝑅𝑇𝑖𝑗 = 1 indicates cell 𝑖 has resource 𝑗, otherwise 𝑅𝑇𝑖𝑗 = 0), 𝑅𝐹𝑇𝑖𝑗
denotes the function type of cell 𝑖 for resource 𝑗 (𝑅𝐹𝑇𝑖𝑗 = −1 indicates cell 𝑖 inputs resource 𝑗, 𝑅𝐹𝑇𝑖𝑗 = 0 indicates cell 𝑖 transfers 
resource 𝑗, and 𝑅𝐹𝑇𝑖𝑗 = 1 indicates cell 𝑖 outputs resource 𝑗), 𝑅𝐴𝑊𝐿𝑖𝑗 represents the actual workload of cell 𝑖 for resource 𝑗, and 
𝑅𝑀𝑊𝐿𝑖𝑗 denotes the maximum workload of cell 𝑖 for resource 𝑗. Let 𝑅𝑀𝑇𝑖𝑗 = 𝜆𝑅𝑀𝑊𝐿𝑖𝑗 for 0 < 𝜆 ≤ 1 denote the minimum 
resource threshold required for cell 𝑖 to function, and 𝑅𝐷𝑇𝑖𝑗 = 𝜅𝑅𝑀𝑊𝐿𝑖𝑗 for 𝜅 > 1 represent the threshold for component overload 
damage. To simplify the discussion, let 𝐹𝑇

𝑆𝑇  denote the set of cells with system type 𝑆𝑇 = 𝑝,𝑤, 𝑓 , 𝑠 for power, water, firefighting, 
and functional space, and functional type 𝐹𝑇 = 𝑠, 𝑡, 𝑑 for supply, transfer, and demand, respectively, with the corresponding number 
of 𝐼𝐹𝑇

𝑆𝑇 . Let  𝑑
𝑖  denote the number and set of resource required by demand cell 𝑖.

Cellular state () represents the operational condition of the cells. In this study, the cellular states 𝑆𝑖 of cell 𝑖 ∈  are classified 
into four types, i.e., based on its behavior during the operation of the PWFS system: 𝑆𝑖 = −1 indicates a damaged state with no 
resource when the component is damaged; 𝑆𝑖 = 0 indicates a failure state with no input resources when the component is not 
damaged; 𝑆𝑖 = 1 indicates a normal state, and 𝑆𝑖 = 2 indicates an overloaded state.

Time step ( ) represents the unit discrete time during the response process of PWFS system under the simulated disturbance 
scenario.

Cellular space () represents is the lattice space in which the cells of the enhanced CA model of the PWFS system are located. 
Resources in the PWFS system flow along physical associations and resource dependencies in the cellular space. For instance, the 
4 
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hospital’s electricity requirements are fulfilled by the municipal power system, which is then transmitted to electrical facilities 
(e.g., general lighting, fire detectors, and chillers) via transformer substations and distribution boxes. Similarly, the municipal water 
supply system transports water to water facilities (e.g., indoor fire hydrants, fire sprinklers, and domestic water amenities) through 
storage tanks and pumps. Notably, hospital water supply system and firefighting system rely on water as one of the most central 
resources. Therefore, this study integrates the water supply system and the firefighting system into a cohesive and homogeneous 
system referred to as the water-fire system. This terminology is adopted to encompass the transportation and utilization of the shared 
resource (i.e., water). Then, drawing upon the resource flows within the cellular space, a power cellular space with the dimensions 
of 𝐼𝑝 × 𝐼𝑝 and a water-fire cellular space with the dimensions of 𝐼𝑣 × 𝐼𝑣, where 𝐼𝑣 = 𝐼𝑤 + 𝐼𝑓 , are established. The components within 
the power cellular space correspond to power facility components and electric circuits, while those within the water-fire cellular 
space represent hydraulic facility components and water network pipes.

Cellular neighborhood ( ) characterizes the interdependencies among the components within the PWFS system, which result from 
physical connections and resource interdependencies. The cellular neighborhood of all cells 𝑖 ∈  in the PWFS system is denoted by 
the adjacency matrix: 

𝐍 =

[

𝐀𝐼𝑝×𝐼𝑝 𝐁𝐼𝑝×𝐼𝑣
𝐂𝐼𝑣×𝐼𝑝 𝐃𝐼𝑣×𝐼𝑣

]

𝐼×𝐼

, (4)

where 𝑛𝑖1𝑖2 = 1 indicates the existence of a connection from cell 𝑖 to cell 𝑗, otherwise 𝑛𝑖1𝑖2 = 0, 𝐀𝐼𝑝×𝐼𝑝  denotes the correlation matrix 
encompassing the interrelationships among the various components within the power system, 𝐁𝐼𝑝×𝐼𝑣  represents the cross-domain 
correlation matrix extending from the power system to the water-fire system, 𝐂𝐼𝑣×𝐼𝑝  represents the cross-domain correlation matrix 
from the water-fire system to the power system, and 𝐃𝐼𝑣×𝐼𝑣  corresponds to the correlation matrix containing the interrelationships 
among the components within the water-fire system. The adjacency matrix 𝐍 delineates the path of resource transfer, where 
electricity serves as the transferred resource in 𝐀𝐼𝑝×𝐼𝑝  and 𝐁𝐼𝑝×𝐼𝑣 , while water functions as the transferred resource in 𝐂𝐼𝑣×𝐼𝑝  and 
𝐃𝐼𝑣×𝐼𝑣 . Let 𝑖 ∶= {𝑖2 ∈  ∶ ∃𝑖1 ∈ , 𝑛𝑖1𝑖 = 1, 𝑛𝑖1𝑖2 = 1} denote the set of neighboring cells of cell 𝑖 ∈ , i.e, the set of cells that has 
the identical direct upstream cells of cell 𝑖. The adjacency matrix 𝐌 can be generated using the improved Warshall method for 𝐍. 
Thus, the set of parent and child cells of cell 𝑖 are defined as ⃖ ⃖⃖⃖⃗ 𝑖 ∶= {𝑖1 ∈  ∶ 𝑚𝑖1𝑖 = 1} and ⃖ ⃖⃖⃖⃖ 𝑖 ∶= {𝑖1 ∈  ∶ 𝑚𝑖𝑖1 = 1}, respectively. 
This representation of cellular neighbors differs from the traditional set-based representation, breaking the limitation of cellular 
neighbors being confined to lattice adjacency.

The following cellular transition rules are crucial components of the enhanced CA model for the PWFS system, comprising three 
parts: the resource transition rule, the power cellular state transition rule, and the water-fire cellular state transition rule.

The resource transfer rule establishes the conditions for cellular resource transfer and the method for calculating changes in 
resource stock when disturbances occur. It is based on the fundamental principle of resource transfer (i.e., potential difference) 
derived from physics [44]. The core idea is that resources flow from cells with surplus (high potential) to those with demand (low 
potential), similar to physical systems (e.g., electricity or fluid dynamics), where energy or materials naturally move from regions 
of higher potential to lower potential. For any cells 𝑖1, 𝑖2 ∈ , they are identified as the demand and supply cells for resource 𝑗 ∈  , 
respectively, if the following conditions hold: 

𝑅𝐹𝑇𝑖1𝑗 + 𝑅𝐹𝑇𝑖2𝑗 = 0 ∧ 𝑅𝐹𝑇𝑖1𝑗 = −1. (5)

Resource transfer is feasible when the actual resource load difference for resource 𝑗 ∈   (referred to as the potential difference) 
between cells 𝑖1, 𝑖2 ∈  satisfies the conditions in Eqs. (5) and (6): 

𝑑𝑖1𝑖2𝑗 = 𝑅𝐴𝑊𝐿𝑖2𝑗 − 𝑅𝐴𝑊𝐿𝑖1𝑗 ≥ 0, (6)

where 𝑑𝑖1𝑖2𝑗 represents the potential difference in resource 𝑗 between cells 𝑖1 and 𝑖2, meaning that resource transfer occurs only 
when the potential difference between supply and demand cells is positive.

Regarding the calculation of cellular resource stock, it is assumed that resource transfer within the PWFS system reaches a steady 
state during propagation, based on system theory, where stability is maintained by dynamically balancing resource distribution. The 
amount of resource 𝑗 held by cell 𝑖 at time 𝑡 + 1 depends on the resource stock of cell 𝑖 at time 𝑡 and the states of its neighboring 
cells at time 𝑡 + 1. Let ′, indexed by 𝑖′, represent the set of failed cells. The allocation of surplus capacity of cell 𝑖 ∈  at time 𝑡 is 
defined as: 

𝛥𝑊 𝐿𝑖𝑖′𝑗𝑡 = 𝑅𝐴𝑊𝐿𝑖′𝑗𝑡 ×
𝑅𝐴𝑊𝐿𝑖𝑗𝑡

∑

𝑖∈𝑖′
𝑅𝐴𝑊𝐿𝑖𝑗𝑡

, ∀𝑖′ ∈ ′, 𝑖 ∈ 𝑖′ , 𝑗 ∈  , 𝑡 ∈  , (7)

where 𝑖′  denote the set of neighboring cells of cell 𝑖′ ∈ ′, 𝑅𝐴𝑊𝐿𝑖′𝑗𝑡 is the actual workload of the failed neighboring cell 𝑖′ for 
resource 𝑗 at time 𝑡, 𝑅𝐴𝑊𝐿𝑖𝑗𝑡 represents the actual workload of cell 𝑖 for resource 𝑗 at time 𝑡, and 

∑

𝑖∈ 𝑖′ 𝑅𝐴𝑊𝐿𝑖𝑗𝑡 is the sum of 
the actual workload of neighboring cells of cell 𝑖′ for resource 𝑗 at time 𝑡. This equation ensures that the workload of the failed cell 
is fairly distributed among its operational neighbors in proportion to their current load, as these operational cells are most likely to 
have the capacity to absorb the additional load. The resource stock of cell 𝑖 ∈  at time 𝑡 + 1 is then computed as: 

𝑅𝐴𝑊𝐿𝑖𝑗𝑡+1 = 𝑅𝐴𝑊𝐿𝑖𝑗𝑡 +
∑

𝑖′∈′
𝛥𝑊 𝐿𝑖𝑖′𝑗𝑡, 𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈  ∖{𝑇 }, (8)

where ∑ 𝛥𝑊 𝐿  represents the amount of resources reallocated by cell 𝑖 from failed neighboring cells at time 𝑡 + 1.
𝑖′∈′ 𝑖𝑖′𝑗𝑡

5 
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Fig. 2. Schematic diagram of cellular state transition.
Figure Note: At the initial state 𝑡 = 𝑡0, the system operates normally. At 𝑡 = 𝑡1, a cell is attacked and damaged, causing its sub-cells to fail. At 𝑡 = 𝑡1 + 1, the 
redistribution of the attacked cell’s workload leads to an overload in its neighboring cells. At 𝑡 = 𝑡1+2, sustained overload in the neighboring cells causes damage, 
resulting in a total system failure downstream.

The power cell state transition rule models the dynamic behavior of power facilities, emphasizing the impact of cascading failures 
in an interconnected power system. This stems from the fact that, in the PWFS system, the power system generally acts as the 
upstream provider of essential energy to components such as water and firefighting systems, which rely on power to function 
properly [45]. The state of cell 𝑖 at time 𝑡 + 1 depends on its state at time 𝑡 and the states of its neighboring cells at time 𝑡. The 
power cell state transition rule for any cell 𝑖 ∈ 𝑝 is defined as: 

𝑆𝑖𝑡+1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1, if 𝑆𝑡−𝑀+1 = 𝑆𝑡−𝑀+2 = ⋯ = 𝑆𝑡 = 2,
0, if (𝑅𝐴𝑊𝐿𝑖𝑗𝑡 < 𝑅𝑀𝑇𝑖𝑗 ) ∨ (𝑆𝑖′𝑗𝑡 = −1 or 0,∀𝑖′ ∈ ⃖⃖⃖⃖⃗ 𝑝

𝑖 ),
1, if (𝑅𝑀𝑇𝑖𝑗 ≤ 𝑅𝐴𝑊𝐿𝑖𝑗𝑡 < 𝑅𝐷𝑇𝑖𝑗 ) ∧ (𝑆𝑖′𝑗𝑡 = 1 or 2,∀𝑖′ ∈ ⃖⃖⃖⃖⃗ 𝑝

𝑖 ),
2, if (𝑅𝐴𝑊𝐿𝑖𝑗𝑡 ≥ 𝑅𝐷𝑇𝑖𝑗 ) ∧ (𝑆𝑖′𝑗𝑡 = 1 or 2,∀𝑖′ ∈ ⃖⃖⃖⃖⃗ 𝑝

𝑖 ),

(9)

where ⃖⃖⃖⃖⃗ 𝑝
𝑖  denote the set of parent cells of cell 𝑖 within the power space. The first condition indicates that cell 𝑖 is damaged if it 

has been in an overload state for 𝑀 consecutive steps. The second condition states that cell 𝑖 fails if its actual workload is below 
the minimum resource threshold or if its parent cells are damaged or failed. The third condition defines cell 𝑖 as normal if its actual 
workload falls between the minimum and overload resource thresholds and its parent cells are either normal or overloaded. The 
fourth condition indicates that cell 𝑖 is overloaded if its actual workload exceeds or equals the overload resource threshold and 
its parent cells are normal or overloaded. Together, these conditions establish the mechanism for simulating the state evolution of 
power cells in response to cascading failures, resource thresholds, and the influence of neighboring cells.

The water-fire cell state transition rule defines the state change of water-fire cells. Failures in the water-fire cells are influenced 
by power availability, reflecting the essential role of power in maintaining the functionality of water and fire suppression systems. 
Additionally, cascading failures within the water-fire system itself are considered, capturing the propagation of disruptions that can 
lead to system-wide breakdowns in emergency scenarios [46]. The water-fire cell state transition rule for any cell 𝑖 ∈ 𝑣 is defined 
as: 

𝑆𝑖𝑡+1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1, if 𝑆𝑡−𝑀+1 = 𝑆𝑡−𝑀+2 = ⋯ = 𝑆𝑡 = 2,
0, if (𝑅𝐴𝑊𝐿𝑖𝑗𝑡 < 𝑅𝑀𝑇𝑖𝑗 ) ∨ (𝑆𝑖′𝑗𝑡 = −1 or 0,∀𝑖′ ∈ ⃖⃖⃖⃖⃗ 𝑝

𝑖 ∪
⃖⃖⃖⃖⃗ 𝑣

𝑖 ),
1, if (𝑅𝑀𝑇𝑖𝑗 ≤ 𝑅𝐴𝑊𝐿𝑖𝑗𝑡 < 𝑅𝐷𝑇𝑖𝑗 ) ∧ (𝑆𝑖′𝑗𝑡 = 1 or 2,∀𝑖′ ∈ ⃖⃖⃖⃖⃗ 𝑝

𝑖 ∪
⃖⃖⃖⃖⃗ 𝑣

𝑖 ),
2, if (𝑅𝐴𝑊𝐿𝑖𝑗𝑡 ≥ 𝑅𝐷𝑇𝑖𝑗 ) ∧ (𝑆𝑖′𝑗𝑡 = 1 or 2,∀𝑖′ ∈ ⃖⃖⃖⃖⃗ 𝑝

𝑖 ∪
⃖⃖⃖⃖⃗ 𝑣

𝑖 ).

(10)

where ⃖ ⃖⃖⃖⃗ 𝑣
𝑖  denote the set of parent cells of cell 𝑖 within the water-fire space. The conditions are similar to those of the power cell 

state transition rule, except that the space for the parent cells is extended to both the power and water-fire cellular spaces. Fig.  2 
illustrates the transition process of the cells during system attacks.
6 
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3.3. Resilience assessment of power-water-firefighting-space system

This section presents a resilience assessment method for CA-based PWFS systems, focusing on system performance characteriza-
tion and resilience evaluation. System performance considers structural and functional indicators, while resilience metrics capture 
key features of the performance curve, including robustness, rapidity, and performance loss.

To assess the resilience of PWFS systems against external perturbations, the first step is to construct the performance curve over 
time, which is simulated using the enhanced CA model for the PWFS system. Specifically, the system structure is characterized by 
cellular normality and connectivity, with resource transfer efficiency and functional space normality serving as indicators of system 
functionality.

Cellular normality (𝛼) is the ratio of the number of cells in the normal state to the total number of cells: 

𝛼𝑡 =
𝐼𝑛𝑜𝑟𝑚𝑡
𝐼

, ∀𝑡 ∈  , (11)

where 𝐼norm𝑡  denotes the number of cells in the normal state at time 𝑡.
Connectivity (𝛽) measures the existence of pathways within the PWFS system that allow the transfer of resources from supply 

cells to demand cells during the evolution under perturbations. It is calculated as: 

𝛽𝑡 =
1
𝐼𝑑

∑

𝑖∈𝑑

⎛

⎜

⎜

⎝

1
𝐽 𝑑
𝑖

∑

𝑗∈ 𝑑
𝑖

∑𝑡
𝑙=1 𝐶𝑃𝑖𝑗𝑡

𝑙

⎞

⎟

⎟

⎠

, ∀𝑡 ∈  , (12)

where 𝐶𝑃𝑖𝑗𝑡 = 1 if a path exists from any supply cell to demand cell 𝑖 for transferring resource 𝑗 at time 𝑡, and 𝐶𝑃𝑖𝑗𝑡 = 0 otherwise. 
𝐼𝑑 and 𝑑 denote the number and set of demand cells, and 𝐽 𝑑

𝑖  and  𝑑
𝑖  denote the number and set of resource required by demand 

cell 𝑖. The average connectivity of demand cell 𝑖 to resource 𝑗 over time 𝑙 is computed by (∑𝑡
𝑙=1 𝐶𝑃𝑖𝑗𝑡)∕𝑙, and (

∑𝑡
𝑙=1 𝐶𝑃𝑖𝑗𝑡)∕𝑙 = 1 for 

all 𝑡 ∈   implying that resource 𝑗 can always be transferred to demand cell 𝑖 during the experiment. The average connectivity of 
all demand cells to resources is then calculated over time 𝑡.

Resource transfer efficiency (𝛾) is the ratio of the quantity of resources consumed by demand cells to the quantity produced by 
supply cells: 

𝛾𝑡 =
1
𝐽

∑

𝑗∈

∑

𝑖∈𝑑 𝑅𝐴𝑊𝐿𝑖𝑗𝑡
∑

𝑖∈𝑠 𝑅𝐴𝑊𝐿𝑖𝑗𝑡
, ∀𝑡 ∈  , (13)

where 𝑠 denotes the set of supply cells.
Functional space normality (𝛿) is the average residual proportion of each service type within the functional space: 

𝛿𝑡 =
1
𝐼𝑠

∑

𝑖∈𝑠

1
𝐽 𝑑
𝑖

∑

𝑗∈ 𝑑
𝑖

𝛿𝑖𝑗𝑡, ∀𝑡 ∈  , (14)

where 𝐼𝑠 and 𝑠 represent the number and set of cells in the functional space, and 𝛿𝑖𝑗𝑡 = 1 for 𝑖 ∈ 𝑠 if cell 𝑖 in the functional space 
is in the normal state for resource 𝑗 at time 𝑡, and 0 otherwise.

Since the values of the above-defined indicators lie within the interval (0, 1), this study adopts a linear aggregation method, 
assuming these indicators are mutually independent, to combine them into a single performance curve over time: 

𝑃𝑡 = 𝑤1𝛼𝑡 +𝑤2𝛽𝑡 +𝑤3𝛾𝑡 +𝑤4𝛿𝑡, ∀𝑡 ∈  , (15)

where 𝑤𝑘 for 𝑘 = 1, 2, 3, 4 are the normalized weight coefficients of the indicators, with ∑4
𝑘=1 𝑤𝑘 = 1. It is straightforward to observe 

that as 𝑤1+𝑤2 → 1, 𝑃𝑡 corresponds to the system structure-based characterization, and as 𝑤3+𝑤4 → 1, it corresponds to the system 
functionality-based characterization. The determination of these weights can be made through discussions within an expert panel. It 
is noteworthy that linear aggregation of indicators is a common method for deriving the performance curve; however, unlike other 
research, this study provides a theoretical analysis of the sensitivity of this linear aggregation in the later of this section.

Based on the above established performance curve, this study adopts commonly used resilience metrics, including robustness, 
rapidity, and performance loss, derived from its features during disturbance and recovery periods to assess the resilience of the 
PWFS system.

Robustness (𝑅𝑂𝐵) is defined as the minimum value of the performance curve during the disturbance and recovery period, 
representing the absorptive capacity of the PWFS system: 

𝑅𝑂𝐵 = min
𝑡∈

𝑃𝑡. (16)

Rapidity (𝑅𝐴𝑃 ) is the ratio of the time taken to reach 𝑅𝑂𝐵 to the time required to recover from 𝑅𝑂𝐵 to original performance: 

𝑅𝐴𝑃 =
arg𝑡∈ {𝑃𝑡 = 𝑅𝑂𝐵}

arg𝑡∈ {𝑃𝑡 = 1} − arg𝑡∈ {𝑃𝑡 = 𝑅𝑂𝐵}
, (17)

where arg𝑡∈ 𝑃𝑡 = 𝑅𝑂𝐵 and arg𝑡∈ 𝑃𝑡 = 1 indicate the time steps when the performance curve reaches 𝑅𝑂𝐵 and fully recovers, 
respectively.

Performance loss (𝑃𝐿) quantifies the cumulative deviation from original performance over the disturbance and recovery period:

𝑃𝐿 =
arg𝑡∈ {𝑃𝑡=1}

(1 − 𝑃𝑡)d𝑡. (18)
∫0

7 
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Fig. 3. Schematic of the PWFS system resilience measurement.

A composite resilience indicator (𝐶𝑅) is then constructed by multiplying the three metrics to provide an integrated measure of 
system resilience: 

𝐶𝑅 = 𝑅𝑂𝐵 × 𝑅𝐴𝑃 × (𝑃𝐿
𝑇

)−1. (19)

This formulation highlights the positive contributions of 𝑅𝑂𝐵 and 𝑅𝐴𝑃  and the negative impact of 𝑃𝐿 on resilience. The 𝐶𝑅
metric captures resilience as a dynamic property encompassing absorption, recovery, and adaptation, enabling comparisons across 
scenarios within the same experimental setting. A schematic of the PWFS system resilience measurement is shown in Fig.  3.

The sensitivity of the resilience of the PWFS system to the weights in the linear aggregation of system performance components 
is then analyzed. Let 𝛥𝑤𝑘 for 𝑘 = 1, 2, 3, 4 represent the weight variations, and let ∑4

𝑘=1 𝛥𝑤𝑘 = 0 to ensure the normalization of the 
weights. For simplicity, assign 𝑥𝑘𝑡  for 𝑘 = 1, 2, 3, 4 to 𝛼𝑡, 𝛽𝑡, 𝛾𝑡, and 𝛿𝑡. Then, the perturbated performance curve is expressed as: 

𝑃𝑡 =
4
∑

𝑘=1
(𝑤𝑘 + 𝛥𝑤𝑘)𝑥𝑘𝑡 , 𝑡 ∈  . (20)

The sensitivity of CR to each resilience metric is approximated using total differentiation, yielding: 

𝛥𝐶𝑅 ≈ 𝜕𝐶𝑅
𝜕𝑅𝑂𝐵

𝛥𝑅𝑂𝐵 + 𝜕𝐶𝑅
𝜕𝑅𝐴𝑃

𝛥𝑅𝐴𝑃 + 𝜕𝐶𝑅
𝜕𝑃𝐿

𝛥𝑃𝐿 = 𝐶𝑅(𝛥𝑅𝑂𝐵
𝑅𝑂𝐵

+ 𝛥𝑅𝐴𝑃
𝑅𝐴𝑃

− 𝛥𝑃𝐿
𝑃𝐿

), (21)

where the second equality follows from that 𝜕𝐶𝑅
𝜕𝑅𝑂𝐵 = 𝐶𝑅

𝑅𝑂𝐵 , 
𝜕𝐶𝑅
𝜕𝑅𝐴𝑃 = 𝐶𝑅

𝑅𝐴𝑃 , and 
𝜕𝐶𝑅
𝜕𝑃𝐿 = −𝐶𝑅

𝑃𝐿 . For analytical simplicity, it is reasonable to 
assume that all resilience metrics reach their respective minimum values at the same point in time. In most cases, the PWFS system 
experiences its lowest performance level toward the end of the attack phase or shortly thereafter, as cascading failures continue to 
propagate and overload additional components. Even if certain indicators reach their minimum values earlier, they tend to remain 
at those levels until the system initiates recovery actions, as observed in case experiments.

For robustness, the following holds: 

𝛥𝑅𝑂𝐵 = min
𝑡∈

𝑃𝑡 − min
𝑡∈

𝑃𝑡 = min
𝑡∈

{

𝑃𝑡 − 𝑃𝑡
}

=
4
∑

𝑘=1
𝛥𝑤𝑘𝑥

𝑘
𝑡∗ , (22)

where 𝑡∗ denotes the time at which 𝑅𝑂𝐵 is attained.
For rapidity, 𝑃𝑡 = 1 if and only if 𝑥𝑘𝑡 = 1 for all 𝑘 = 1, 2, 3, 4. Then, the time at which the system returns to its original performance 

is determined by the slowest-recovering indicator: 

arg
𝑡∈

{𝑃𝑡 = 1} = max
{

arg
𝑡∈

{𝑥𝑘𝑡 = 1}, 𝑘 = 1, 2, 3, 4
}

= arg
𝑡∈

{𝑃𝑡 = 1}, (23)

Hence, changes in indicator weights do not affect rapidity.
8 
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For performance loss, the following holds: 

𝛥𝑃𝐿 = ∫

arg
𝑡∈

{𝑃𝑡=1}

0
(1 − 𝑃𝑡)d𝑡 − ∫

arg
𝑡∈

{𝑃𝑡=1}

0
(1 − 𝑃𝑡)d𝑡 = ∫

arg
𝑡∈

{𝑃𝑡=1}

0

( 4
∑

𝑘=1
(𝛥𝑤𝑘𝑥

𝑘
𝑡 )

)

d𝑡 =
4
∑

𝑘=1
𝛥𝑤𝑘 ∫

arg
𝑡∈

{𝑃𝑡=1}

0
𝑥𝑘𝑡 d𝑡. (24)

Thus, the resulting change in composite resilience is: 

𝛥𝐶𝑅 ≈ 𝐶𝑅
⎛

⎜

⎜

⎝

∑4
𝑘=1 𝛥𝑤𝑘𝑥𝑘𝑡∗
𝑅𝑂𝐵

−
∑4

𝑘=1 𝛥𝑤𝑘 ∫
arg𝑡∈ {𝑃𝑡=1}
0 𝑥𝑘𝑡 d𝑡
𝑃𝐿

⎞

⎟

⎟

⎠

. (25)

This demonstrates that system resilience responds linearly to changes in weights within the aggregated performance curve, 
despite integrated resilience being derived from the multiplicative aggregation of robustness, rapidity, and performance loss. This 
linear sensitivity enhances interpretability, facilitating communication with non-technical stakeholders such as policymakers and 
emergency managers, while also improving model transparency and reducing concerns about bias from weight assignments [47].

3.4. Simulation procedure

This section provides the simulation algorithm for the enhanced CA model for the PWFS system and the corresponding 
algorithmic complexity analysis to provides the insights into the scalability and computational efficiency.

The following Algorithm 1 presents the simulation procedure of the enhanced CA model for resilience assessment of the PWFS 
system. The analysis of algorithmic time complexity begins with the time complexity of a single formula. Eq. (7) involves summing 
over all elements in the neighbor cell set 𝑖′  of a given damaged cell 𝑖′ under a specific resource 𝑗, with a time complexity of 𝑂(𝑁𝑖′ ). 
Eq. (8) sums over all cells in the damaged cell set ′, with a time complexity of 𝑂(𝐼 ′). In Eq.  (9), the first condition is evaluated 
𝑀 times, while the second, third, and fourth conditions are dominated by the number of parent cells of cell 𝑖 in the power space, 
resulting in a time complexity of max{𝑂(𝑀), 𝑂(⃖⃖⃖⃗𝑁𝑝

𝑖 )}. Similarly, for Eq.  (10), the time complexity is max{𝑂(𝑀), 𝑂(⃖⃖⃖⃗𝑁𝑝
𝑖 + ⃖⃖⃖⃗𝑁𝑣

𝑖 )}. The 
time complexity of Eq.  (11) is 𝑂(𝐼). Eq. (12), which involves three layers of summation, has a time complexity of 𝑂(𝐼𝑑 max𝑖∈𝑑 {𝐽 𝑑

𝑖 }𝑡). 
The time complexity of Eq.  (13) is 𝑂(𝐽 (𝐼𝑑+𝐼𝑠)), while Eq.  (14) has a time complexity of 𝑂(𝐼𝑠 max𝑖∈𝑠{𝐽 𝑑

𝑖 }). Notably, since the PWFS 
system contains the resource of power and water, then max𝑖∈𝑠{𝐽 𝑑

𝑖 } ≤ 2 and max𝑖∈𝑑 {𝐽 𝑑
𝑖 } ≤ 2. Therefore, for the loop in Lines 4–17, 

the time complexity of Lines 5–15 is: 

𝑂

(

𝐺

[

max
𝑔∈

{

𝑁𝑔

(

𝐽 (𝐼 ′ + max
𝑖∈′

{𝑁𝑖′}) + max
{

𝑀,max
𝑖∈𝑝

{⃖⃖⃖⃗𝑁𝑝
𝑖 },max

𝑖∈𝑣
{⃖⃖⃖⃗𝑁𝑝

𝑖 + ⃖⃖⃖⃗𝑁𝑣
𝑖 }
})}

+ max
𝑖∈

{⃖⃖⃖𝑁 𝑖}

])

. (26)

The complexity of Line 16 is 𝑂 (

𝐺
[

𝐼 + 𝐽 (𝐼𝑑 + 𝐼𝑠) + 𝐼𝑠
])

, excluding the time complexity of Eq.  (12). The part involving Eq.  (12) 
includes the summation: 

𝐺
∑

𝑡=1
𝑂
(

𝐼𝑑 𝑡
)

= 𝑂
(

𝐺(𝐺 + 1)
2

𝐼𝑑
)

= 𝑂
(

𝐼𝑑𝐺2) . (27)

Thus, the overall time complexity of the perturbation phase is: 

𝑂

(

𝐺
[

max
𝑔∈

{

𝑁𝑔
}

(

𝐼 ′ + max
𝑖∈′

{𝑁𝑖′} + max
{

𝑀,max
𝑖∈𝑝

{⃖⃖⃖⃗𝑁𝑝
𝑖 },max

𝑖∈𝑣
{⃖⃖⃖⃗𝑁𝑝

𝑖 + ⃖⃖⃖⃗𝑁𝑣
𝑖 }
})

+ max
𝑖∈

{⃖⃖⃖𝑁 𝑖}
]

+ 𝐺
[

𝐼 + 𝐼𝑑 + 2𝐼𝑠
]

+ 𝐼𝑑𝐺2

)

. (28)

Through similar analysis, the time complexity of the recover phase is: 

𝑂

(

𝐼

[

(

max
𝑖′∈

{𝑁𝑖′}
)2

+ max
{

𝑀,max
𝑖∈𝑝

{⃖⃖⃖⃗𝑁𝑝
𝑖 },max

𝑖∈𝑣
{⃖⃖⃖⃗𝑁𝑝

𝑖 + ⃖⃖⃖⃗𝑁𝑣
𝑖 }
}

]

+ 𝐼𝑑𝐼2
)

. (29)

Overall, the enhanced CA-based resilience assessment algorithm exhibits polynomial complexity, indicating that it can be solved 
within a reasonable time, with manageable computational costs even as the input size increases, making it suitable for large-scale 
simulation tasks in practice.

4. Case study

4.1. Case description and data collection

A case study is conducted to demonstrate the proposed enhanced CA-based resilience assessment method, focusing on the 
outpatient facility at Nanjing Hospital of Traditional Chinese Medicine (NJHTCM). The outpatient building, covering 19,300 square 
meters, includes a medical space of 44,000 square meters. With an average daily outpatient volume of 2868, the hospital serves a 
significant number of visitors. Fig.  4 illustrates the exterior views of the outpatient building and its functional areas as shown in 
the ground floor layout.

The cellular neighborhood of these components is shown in Fig.  5. The power supply of NJHTCM is initially sourced from the 
municipal grid and then distributed through transformers and power boxes to various end-use facilities, including chillers, lighting, 
and fire detectors. Similarly, the water supply is routed through components such as storage tanks and pumps to serve both the 
9 
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Algorithm 1 Simulation Algorithm for Enhanced CA-Based Resilience Assessment
1: Input: The enhanced CA model of the PWFS system. 
2: Output: Performance curve 𝑃 , robustness 𝑅𝑂𝐵, rapidity 𝑅𝐴𝑃 , performance loss 𝑃𝐿, composite resilience indicator 𝐶𝑅, 
simulation time 𝑇 . 

3: Initialization: Set of attacked cells  ∶= ∅, 𝑡 = 0. 
4: for 𝑡 = 1,… , 𝐺 do 
5: Select 𝑔𝑡 ∈ ∖ by the specific attack pattern, append 𝑔𝑡 to , and set cellular state 𝑆𝑔𝑡 = −1. 
6: for 𝑖 ∈ 𝑔𝑡  do 
7: for 𝑗 ∈   do 
8: Calculate the surplus capacity allocation 𝛥𝑊 𝐿𝑖𝑔𝑡𝑗𝑡 using Equation (7). 
9: Calculate the actual workload after redistribution 𝑅𝐴𝑊𝐿𝑖𝑗𝑡+1 using Equation (8).
10: end for
11: Update the cellular state 𝑆𝑖 for power and water-fire cell using Equations (9) and (10).
12: end for
13: for 𝑖 ∈ ⃖⃖⃖⃖⃖ 𝑔𝑡  do 
14: Set cellular state 𝑆𝑖 = 0.
15: end for
16: Calculate the cellular normality 𝛼𝑡, connectivity 𝛽𝑡, resource transfer efficiency 𝛾𝑡, functional space normality 𝛿𝑡, and 

performance 𝑃𝑡 using Equations (11)-(15).
17: end for
18: while 𝑃𝑡 ≠ 1 do 
19: Select 𝑖′ ∈ ′ ∶= {𝑖 ∈  ∶ 𝑆𝑖 = −1} by the specific recovery pattern and append 𝑖′ to . 
20: Set cellular state 𝑆𝑖′ = 1. 
21: for 𝑖 ∈ 𝑖 ∪ {𝑖′} do 
22: Calculate the surplus capacity allocation 𝛥𝑊 𝐿𝑖𝑔𝑡𝑗𝑡 using Equation (7). 
23: Calculate the actual workload after redistribution 𝑅𝐴𝑊𝐿𝑖𝑗𝑡+1 using Equation (8).
24: end for
25: Update the cellular state 𝑆𝑖 for power and water-fire cell using Equations (9) and (10). 
26: Calculate the cellular normality 𝛼𝑡, connectivity 𝛽𝑡, resource transfer efficiency 𝛾𝑡, functional space normality 𝛿𝑡, and 

performance 𝑃𝑡 using Equations (11)-(15). 
27: 𝑡 ← 𝑡 + 1.
28: end while
29: Calculate the robustness 𝑅𝑂𝐵, rapidity 𝑅𝐴𝑃 , performance loss 𝑃𝐿, composite resilience indicator 𝐶𝑅 using Equations (16)-(19).

Fig. 4. Exterior views of NJHTCM outpatient building and its functional areas.
10 
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Fig. 5. Cellular neighborhood (interdependency) of the PWFS CA model.

Table 1
Data of daily resource supply and demand among the case PWFS system.
 Supply facilities Target supply Demand facilities Target demand 
 
Municipal water supply 2472 (m3)

Domestic water 1280 (m3)  
 Hot water 400 (m3)  
 Indoor fire hydrant 648 (m3)  
 Fire sprinkler 144 (m3)  
 

Municipal power supply 16,960 (kWh)

General lighting 4300 (kWh)  
 Sockets 1200 (kWh)  
 Fire detector 800 (kWh)  
 Emergency lighting 600 (kWh)  
 Air source heat pump 1200 (kWh)  
 Chillers 5500 (kWh)  
 Fire transfer pumps 600 (kWh)  
 Fire stabilization pumps 1080 (kWh)  
 Fire booster pumps 1320 (kWh)  
 Sprinkler pressurization pumps 360 (kWh)  

hospital and its facilities, including indoor fire hydrants and sprinklers. In the outpatient building (see Fig.  4), functional units 
include medical detection departments, outpatient rooms, pharmacies, and offices. These units require both hot and cold water for 
daily use and fire protection, as well as electrical power for outlets, lighting systems, and fire detection equipment. Details of the 
case PWFS system components and their corresponding identification numbers are provided in Table  A.1.

To illustrate the resource dynamics within the PWFS system, this study collects data on resource consumption from the energy 
audit and building energy efficiency reports of NJHTCM. Table  1 presents an overview of the resource capacity of supply facilities 
and the resource requirements of demand facilities.

4.2. Simulation setting

The enhanced CA model for the PWFS system includes the following basic settings, which are common in related resilience 
simulation literature:

(1) Before any disruptions occur, the PWFS system operates in a steady state, with supply, transfer, and demand cells at their 
normal levels.

(2) The supply cell ensures that the total resource outflow does not exceed its supply capacity.
(3) The number of resources entering the transfer cell equals the number leaving it, indicating that the transfer cell does not 

consume resources.
11 
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Table 2
Simulation parameters.
 Parameter Iteration Attack ratio 𝜆 𝜅 𝑤  
 Value 100 20% 0.5 1.3 0.25 

Table 3
Simulated system resilience results.
 System Simulation results
 𝑅𝐴𝑃 𝑅𝑂𝐵 𝑃𝐿 𝐶𝑅  
 PWFS system

0.3491
0.5577 28.6723 0.2777 

 Power system 0.5547 30.2611 0.2647 
 Water-fire system 0.5604 27.0644 0.2883 

(4) Random attacks affect individual cells, not the links between them.

The overload-to-damage threshold is set at 2; if a cell remains overloaded for two consecutive cycles, it transitions to a failure 
state in the next cycle. A random attack and recover pattern is used, with an attack ratio of 20%, and the recovery process continued 
until system performance returned to its pre-attack state. The developed CA model for the case PWFS system consists of 57 cells and 
92 links, representing cellular neighborhood relationships. These cells include 2 supply cells, 19 transfer cells, and 47 demand cells. 
Some cells serve dual functions, such as fire booster pumps, which consume electricity in the power system while also acting as water 
transfer facilities in the firefighting system. During the weight elicitation for system performance aggregation, three technicians of 
NJHTCM operations were consulted. As they showed no strong preference among the four performance indicators, equal weights 
were assigned to each. Using real-world data from the selected hospital, the simulation parameters for this study are summarized 
in Table  2.

4.3. Case result and analysis

This section analyzes the resilience results of the case PWFS system and further examines the impact of system interdependencies 
on the overall resilience of the PWFS system.

4.3.1. Resilience analysis
Fig.  6 shows the simulated performance curves for the PWFS system, water-fire system, and power system, respectively. During 

these experiments, the system experienced four collapses, leading to a total loss of performance. These failures were all caused by 
municipal power interruptions during the simulation. Notably, the mean performance for all three systems reaches its lowest point 
at time 12. Excluding collapse scenarios, the performance values for the PWFS, power, and water-fire systems are 0.1370, 0.1213, 
and 0.1556, respectively.

Table  3 presents the resilience metrics for the PWFS, power, and water-fire systems. The hospital PWFS system shows a mean 𝑅𝐴𝑃
of 0.3491. For 𝑅𝑂𝐵, values range from 0.5547 to 0.5604, with the water-fire system exhibiting the highest value of 0.5604, while 
the power system is slightly lower at 0.5547. This indicates that the water-fire system is more stable and less affected by uncertainty 
and external disruptions. The 𝑃𝐿 analysis shows the power system performs poorly, with a score of 0.7447, indicating it is most 
vulnerable to disturbances. Regarding the integrated metric 𝐶𝑅, the water-fire system has the highest value of 0.2883, while the 
PWFS and power systems have values of 0.2777 and 0.2647, respectively. Based on the 𝐶𝑅 distribution, the power system shows 
lower median and first quartile values compared to the other two systems. As a result, the power system exhibits lower resilience, 
making it more prone to failure under stress.

4.3.2. Effect of system interdependencies on resilience
Fig.  6(d) illustrates the performance trends of the PWFS, power, and water-fire systems, which show similarities, suggesting 

a degree of interdependence among these systems. To explore the effect of system interdependence on resilience, this section 
develops linear regression models for 𝑃𝐿 and 𝐶𝑅 across these systems. Examining the resilience interdependence of the PWFS and 
its subsystems is crucial for optimizing resource allocation and system design. Specifically, if a strong correlation exists between 
the resilience of different systems, it is essential to account for their interactions when allocating resources to maximize efficiency. 
Additionally, when designing or improving a system, the interrelationship with other systems must be considered to ensure overall 
coordination. This study assesses the impact of interdependence on system resilience using the Pearson correlation coefficient and 
the slope of the fitted trendline. The Pearson correlation coefficient quantifies the strength of the linear relationship between two 
variables, ranging from −1 to 1, with higher absolute values indicating stronger correlations. The slope of the fitted trendline reflects 
the coupling strength, where a steeper slope indicates a stronger coupling. The linear regression and correlation analysis of 𝑃𝐿 and 
𝐶𝑅 jointly reveal the interdependence characteristics of system resilience and performance under perturbations. Specifically, the 
linear regression of 𝑃𝐿 reflects the performance correlation under disturbances, while the analysis of 𝐶𝑅, incorporating standardized 
resilience metrics in a non-differentiated scenario, highlights the internal coupling and interdependence of resilience across systems. 
The macro-level linear fitting analysis of 𝐶𝑅 further illustrates how system coupling affects overall resilience. Meanwhile, the 
12 
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Fig. 6. Simulated system performance curves.

Table 4
PL regression results.
 Independent variable Dependent variable Pearson’s r Slope Intercept  
 𝑃𝐿Power 𝑃𝐿Water-fire 0.4193 0.3809 ± 0.0833 15.5400 ± 2.5685 
 𝑃𝐿Water-fire 𝑃𝐿Power 0.4193 0.4616 ± 0.1010 17.7687 ± 2.7857 
 𝑃𝐿Power 𝑃𝐿PWFS 0.8600 0.6918 ± 0.0415 7.7392 ± 1.2783  
 𝑃𝐿Water-fire 𝑃𝐿PWFS 0.8238 0.7295 ± 0.0507 8.9293 ± 1.399  

correlation analysis of 𝑃𝐿 shows the influence of inter-system dependencies on performance fluctuations. This dual-perspective 
approach offers a more comprehensive understanding of system resilience from both performance and structural interdependence 
dimensions.

Table  4 shows that the correlation between the power and water-fire systems is 0.4193, with a trendline slope of 0.3809, 
indicating a weak correlation in system performance under perturbation. However, a strong positive linear correlation exists between 
the power system and the PWFS, as well as between the water-fire and PWFS systems, with Pearson correlation coefficients of 0.8600 
and 0.8238, respectively. Although the enhanced CA model suggests physical connections between the power and water-fire systems, 
their simulated 𝑃𝐿 values appear to be less relevant. This discrepancy may result from cascade failures occurring only in specific 
scenarios, such as pump damage.

Based on Fig.  7, both 𝐶𝑅Power and 𝐶𝑅Water-fire exhibit a strong correlation with 𝐶𝑅PWFS, with Pearson correlation coefficients of 
0.9872 and 0.9890, respectively. Compared to the water-fire system, the power system (trendline slope = 0.9827) shows a stronger 
coupling with the PWFS system. To explore the resilience enhancement strategy based on resilience interdependence, this study 
examines how the resilience of the PWFS system changes when the resilience of the power system and the water-fire system is 
increased by 1 unit. For example, the resilience increase of the power system by 1 unit is determined by evaluating the corresponding 
increase in the resilience of the water-fire system, based on the linear fitting results in Fig.  7(a). The enhanced resilience values of the 
13 
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Fig. 7. CR regression results.

power and water-fire systems are then incorporated into the linear fitting equations in Figs.  7(c) and 7(d), respectively. Ultimately, 
the total resilience enhancement of the PWFS system is the sum of the increases attributed to the power and water-fire systems. 
Following this approach, the total resilience increases of the PWFS system are 1.9685 units and 1.9182 units for the power and 
water-fire systems, respectively. Therefore, with limited resources for strengthening the resilience of the PWFS system, prioritizing 
the enhancement of the resilience of the power system is more effective than focusing on the water-fire system.

4.4. Test of COVID-19 pandemic disturbance

This section presents another real-world test of NJHTCM under the COVID-19 pandemic scenario to further examine the impact 
of resource surges on system resilience. Based on resource demand data from the COVID-19 period, all functional units, including 
outpatient rooms, medical detection departments, and offices, experienced a daily increase in water and hot water demand by 12.3% 
and 30%, respectively, compared to pre-pandemic conditions. Additionally, the electricity demand for sockets in medical detection 
departments and outpatient rooms rose significantly by 28.6%. As a result, total electricity demand increased by 5.9%, and total 
water demand for the outpatient building of NJHTCM rose by 8.5%. Furthermore, the simulation maintained the same parameters 
as the non-pandemic scenario (as shown in Table  2), given that the facility structure of the case PWFS system did not change during 
the epidemic.

Based on the data changes and simulation parameters, 100 stochastic simulations of the PWFS system under the COVID-19 
pandemic scenario are conducted, with results presented in Table  5. Fig.  8 illustrates the time slices of the cellular state evolution 
in a PWFS system from one experiment, with iteration 29. Throughout these 100 randomized experiments, the system experienced 
5 crashes, attributed to abnormalities in municipal power or water supply, a cause similar to that in non-epidemic conditions. The 
outcomes reveal that 𝐶𝑅 of the PWFS system and its subsystems has declined to varying extents in the epidemic state, with the 
power system witnessing the most significant reduction of 19.07% in 𝐶𝑅. Meanwhile, 𝑅𝑂𝐵 of the power system have experienced 
notable declines of 11.04%, indicating its heightened susceptibility to extreme situations during epidemic conditions. The water-fire 
14 
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Fig. 8. Time slices of the cellular state evolution.

Table 5
Simulated system resilience results under epidemic scenario.
 𝑅𝐴𝑃 𝑅𝑂𝐵 𝑃𝐿 𝐶𝑅

 Mean Median Quartile

 PWFS system
0.3101

0.5194 29.8907 0.236 0.2887 0.2328 
 Power system 0.4934 30.5174 0.2177 0.2736 0.2133 
 Water-fire system 0.5526 29.2847 0.2714 0.3065 0.2462 

system exhibited the greatest increase in 𝑃𝐿 at 8.2% during the epidemic state, although the power system retained the highest 
𝑃𝐿. Moreover, 𝑅𝐴𝑃  also decreased from 0.3491 to 0.3101, marking an 11.18% decline.

This section also investigates the interdependence effects of the system on resilience in the context of the COVID-19 pandemic, 
with findings presented in Table  6. The Pearson’s correlation coefficient between the power and water-fire systems is calculated 
at 0.9061, reflecting a 5.03% decrease compared to the pre-pandemic state. Similarly, the coupling strength between these two 
systems declined by 5.24% and 4.82%, respectively. For each system individually, the correlation coefficients with the PWFS system 
resilience decreased but remained above 0.9700. Notably, the coupling strength between the power and water-fire systems for the 
PWFS system resilience shifted from a configuration where the power system’s coupling strength was higher to one where the 
water-fire system now has greater coupling strength, at 0.9623. In the epidemic simulation, as in the non-epidemic scenario, both 
the power system and water-fire system are assumed to experience a one-unit increase in resilience. The impact of this improvement 
on the PWFS system shows resilience gains of 1.9023 for the power system and 1.8395 for the water-fire system, indicating reduced 
efficiency compared to the non-epidemic scenario.

These findings underscore that during the COVID-19 pandemic, the increased demand on hospital power, water, and firefighting 
systems negatively affected their resilience, making them more vulnerable to stress and disruptions. This surge in demand has also 
weakened system interdependencies, complicating effective resource allocation and emergency response. Specifically, during the 
pandemic, the systems faced greater resource demand, and this expansion may have exceeded initial design capacity, resulting 
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Table 6
CR regression results under epidemic scenario.
 Independent variable Dependent variable Pearson’s r Slope Intercept  
 𝑃𝐿Power 𝑃𝐿Water-fire 0.9061 0.9075 ± 0.0428 0.0537 ± 0.0102  
 𝑃𝐿Water-fire 𝑃𝐿Power 0.9061 0.9048 ± 0.0427 −0.0097 ± 0.0115 
 𝑃𝐿Power 𝑃𝐿PWFS 0.9710 0.9552 ± 0.0237 0.0280 ± 0.0056  
 𝑃𝐿Water-fire 𝑃𝐿PWFS 0.9797 0.9623 ± 0.0199 −0.0058 ± 0.0053 

Table 7
Simulated system resilience results across attack patterns.
 Attack PWFS system Power system Water-fire system
 Power Water-fire Power Water-fire Power Water-fire 
 𝑅𝐴𝑃 0.2922 0.4248 0.2922 0.4248 0.2922 0.4248  
 𝑅𝑂𝐵 0.5862 0.6333 0.3929 0.8862 0.7794 0.3779  
 𝑃𝐿 30.5301 24.7927 25.508 30.8585 35.5526 18.6146  
 𝐶𝑅 0.2694 0.3762 0.2161 0.4231 0.3050 0.2975  

in decreased interdependencies and inefficient mutual support. Additionally, the increased strain on all systems could expose 
vulnerabilities. For example, if the water supply system can meet demand under normal conditions but struggles during periods 
of heightened demand, it could initiate a chain reaction affecting other systems. To ensure hospitals maintain high resilience during 
a pandemic, comprehensive planning and resource management are essential to ensure coordination and balance across systems.

4.5. Model validation

This section validates the enhanced CA-based resilience assessment for the PWFS system through sensitivity and comparison 
analysis. The sensitivity analysis considers attack patterns and overload-to-damage thresholds, while the comparison analysis 
contrasts the performance of the enhanced CA-based assessment with the network-based approach. 

4.5.1. Model analysis of attack patterns and overload-to-damage thresholds
The overload-to-damage threshold and attack pattern settings of the enhanced CA model are considered strong assumptions; 

therefore, model validation for these aspects is provided. Regarding attack patterns, this section examines the resilience results of 
the PWFS system under random attacks, with the power system and the water-fire system as targets, respectively. For the overload-
to-damage threshold, various thresholds are tested. Other specific attack pattern settings, such as those based on network metrics, 
are not considered, as this study focuses on exploring the resilience characteristics of the PWFS system and the interdependent 
impact on it.

Simulation results under two representative attack patterns (targeting the power and water-fire systems, respectively) show that 
the model can differentiate the resilience characteristics of the PWFS system and its subsystems, capturing cascading effects induced 
by damage. Specifically, the resilience simulation results in Table  7 reveal significant differences in 𝑅𝑂𝐵, 𝑅𝐴𝑃 , 𝑃𝐿, and 𝐶𝑅 for 
the PWFS system and its subsystems under different attack patterns. When the target is the water-fire system, the PWFS system 
exhibits higher 𝑅𝐴𝑃  (0.4248) and 𝑅𝑂𝐵 (0.6333), with lower 𝑃𝐿 (24.7927), resulting in a higher 𝐶𝑅 (0.3762), indicating stronger 
adaptability and recovery capacity. In contrast, when the power system is targeted, both 𝑅𝑂𝐵 and 𝐶𝑅 of the PWFS system decrease 
significantly to 0.5862 and 0.2694, respectively, suggesting the critical role of the power system within the coupled system, where 
its damage causes a greater performance impact on the overall system. Further analysis of subsystem performance shows that when 
the power system is attacked, its 𝑅𝑂𝐵 (0.3929) and 𝐶𝑅 (0.2161) are significantly lower than those of the water-fire system under 
the same attack (𝑅𝑂𝐵 = 0.7794, 𝐶𝑅 = 0.3050), indicating the weaker resilience of power system. However, when the water-fire 
system is attacked, the resilience indicators of the power subsystem surpass those of the water-fire system (𝐶𝑅: 0.2975 vs. 0.4231), 
demonstrating that the power system is more stable under non-targeted attacks. These results confirm the effectiveness of enhanced 
CA model in identifying key subsystems and assessing resilience characteristics.

Fig.  9 illustrates that as the overload-to-damage threshold increases, the resilience metrics of the PWFS system and its subsystems 
improve, indicating a greater capacity to withstand prolonged overloads. In terms of 𝑅𝑂𝐵, the PWFS system, power system, and 
water-fire system show consistent improvements, with the power system experiencing an increase from 0.4156 to 0.4735, reflecting 
enhanced resistance to initial shocks. The 𝑃𝐿 of the PWFS system decreases from 13.6337 to 12.8535, while the power system shows 
a more significant reduction in 𝑃𝐿, from 12.3509 to 11.2739, suggesting faster recovery after disruptions. 𝐶𝑅 also increases across 
all systems, with the 𝐶𝑅 of PWFS system rising from 0.3170 to 0.3968, and a particularly notable increase in the 𝐶𝑅 of power 
system, which reaches 0.5505. These findings confirm the validity of the overload-to-damage threshold settings in the enhanced 
CA model, demonstrating that higher thresholds effectively reduce structural damage caused by overloads and enhance resilience 
during dynamic failures and recovery.
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Fig. 9. Simulated system resilience results across overload-to-damage thresholds.

Table 8
Network-based resilience metrics and referenced literature.
 Indicator Indicator direction Literature  
 Average closeness centrality Positive R1  
 Average betweenness centrality Positive R2  
 Average eigenvector centrality Positive R1, R4  
 Natural connectivity Positive R3  
 Network efficiency Positive R1, R2, R3, R4 
 Largest connected component Positive R2  
 K-core Positive R2  
Note: R1 [48], R2 [49], R3 [22], R4 [50].

Table 9
Simulated resilience results across comparison benchmarks.
 Our model R1 R2 R3 R4 E  
 𝑅𝑂𝐵 0.4135 0.6945 0.8149 0.3216 0.7312 0.6731 
 𝑃𝐿 12.4158 5.6133 3.3331 17.6948 5.0152 7.5363 
 𝐶𝑅 0.3667 1.3323 2.6790 0.1895 1.5739 0.9360 

4.5.2. Comparison analysis with network-based approach
To enhance the credibility of the proposed enhanced CA model, this section conducts a comparison validation with well-

established network-based infrastructure resilience assessment methods. Although agent-based models are commonly used for 
resilience analysis, they are excluded here due to their dependence on detailed agent behavior design, which varies significantly 
across systems and undermines cross-model comparability. In contrast, network-based methods offer a more consistent structural 
representation and are better aligned with the cellular spaces and neighborhood of the enhanced CA model. This alignment enables 
a meaningful comparison through the enhanced cellular evolution network approach. 

Representative literature and associated network-based resilience metrics (as listed in Table  8) are selected for benchmarking. 
A total of 100 simulations are conducted. In each simulation, multiple network metrics are calculated and aggregated with equal 
weight to evaluate overall system resilience. To integrate these multiple indicators into a single comparative reference, an aggregated 
benchmark (denoted as E) is constructed by combining all normalized network metrics, using their initial values as denominators 
to address scale differences.

Fig.  10 illustrates the resilience curves for system performance under different methods. Table  9 presents the corresponding 
PWFS system resilience evaluation results. The trends across various models are generally consistent, validating the rationality 
of the enhanced CA model. The resilience curve of enhanced CA model lies between the E and R3 benchmarks. Notably, 𝑅𝑂𝐵
observed for R1, R2, R4, and E remain above 0.65, indicating relatively conservative degradation. In contrast, the proposed model 
and R3 exhibit more significant performance drops, with 𝑅𝑂𝐵 of 0.4135 and 0.3216, respectively, highlighting their sensitivity to 
disruptions. 

Furthermore, Pearson correlation analysis based on resilience indicators, in Fig.  11, demonstrates that the proposed model 
maintains strong correlations with most benchmarks, except for R2, which exhibits a lower correlation coefficient of 0.698 and 
consistently shows weaker correlation with other models as well. In conclusion, the comparative analysis confirms that the proposed 
enhanced CA model produces resilience evaluation results that are consistent with those of established network-based methods. 
Despite not employing agent-based models due to their limited comparability, the strong alignment with network-based benchmarks 
substantiates the reliability of the proposed model.
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Fig. 10. Simulated system performance curves across comparison benchmarks.

Fig. 11. Correlation heat map of simulated resilience results across comparison benchmarks.

5. Conclusion

This study introduces a novel enhanced CA-based modeling framework to evaluate the resilience of the hospital PWFS system, 
advancing current research by addressing the limitations of existing methods in capturing the dynamic and interconnected nature 
of such critical infrastructure. The novelty lies in the formal representation of the PWFS system as a seven-tuple CA model, 
which enables a fine-grained simulation of system components, their spatial relationships, and the evolution of their states under 
perturbations. Unlike traditional models, this approach integrates system-level interdependencies, fault propagation mechanisms, 
and cascading effects into a unified simulation framework. Moreover, by establishing resilience metrics grounded in cellular 
normality, connectivity, resource transfer efficiency, and functional space normality – alongside system robustness, rapidity, and 
performance loss – this research provides a quantifiable and systematic method to assess resilience performance. A case study of the 
outpatient building at NJHTCM in China demonstrates the proposed model, analyzing normal and epidemic scenarios, various attack 
patterns, parameter variations, and providing a comparative analysis with other network-based resilience assessment methods. These 
innovations not only offer a new lens through which to understand the operational behavior of hospital lifeline systems under stress 
but also contribute to the broader body of resilience modeling by bridging the gap between theoretical modeling and real-world 
emergency scenarios.

The research findings offer valuable insights into the resilience design of hospitals. For power systems, during non-pandemic 
periods when performance is inadequate, hospital management should prioritize resilience design. This can be achieved by 
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Table A.1
Components of PWFS system for NJHTCM outpatient building.
 ID Facility ID Facility

 P1 Municipal electricity supply W4 Chiller
 P2 Transformer W5 Daily water
 P3 Power supply box W6 Hot water
 P4 Fire-fighting electric main distribution box F1 Fire transfer pump
 P5 Fire distribution box F2 Rooftop fire water tank
 P6 Emergency lighting distribution box F3 Indoor fire storage tank
 P7 Fire pump distribution box F4 Fire stabilization pump
 P8 Water pump distribution box F5 Fire-fighting booster pump
 P9 Lighting and socket distribution box F6 Spray pressurization pump
 P10 General lighting F7 Indoor fire hydrant
 P11 Socket F8 Automatic sprinkler
 P12 Fire detector S1 Outpatient room
 P13 Emergency lighting S2 Medical technology department
 W1 Municipal water supply S3 Pharmacy
 W2 Domestic water storage tank S4 Doctor office
 W3 Air source heat pump

optimizing power supply equipment, strengthening backup power sources, and establishing emergency power recovery plans to 
ensure reliable power during crises. Additionally, considering the interdependencies between the water-fire and PWFS systems, 
enhancing the coupling between these two systems can improve overall resilience. For example, adopting mutually supportive design 
principles to ensure the water-fire system operates effectively is essential for the PWFS system, while optimizing resource allocation 
and emergency response capabilities across both systems. Finally, hospital management should regularly conduct comprehensive 
resilience assessments to understand the interdependencies and coupling strength among subsystems, facilitating the development 
of long-term strategies to enhance hospital resilience and ensure swift response and adaptability in the face of challenges. These 
insights are critical for improving hospital resilience, reliability, and adaptability in responding to emergencies.

While the proposed enhanced CA model has shown potential in simulating the dynamics of the current PWFS system, its 
scalability to other interdependent infrastructure systems requires further exploration. The general framework may be extendable, 
but challenges arise due to system-specific operational mechanisms, dependency structures, and recovery characteristics. Never-
theless, the proposed modeling approach, especially the construction logic based on seven key elements, offers a modular and 
flexible structure that supports such extensions. To support such scalability, future work should focus on refining the operational 
mechanisms and state transition rules through the integration of empirical data. For example, incorporating a direct current power 
flow model could improve the fidelity of power system representations, while embedding recovery strategies that consider real-world 
constraints, such as limited resources and logistical inefficiencies, would enhance the relevance for resilience planning. By adjusting 
the state transition rules to reflect the operational characteristics of the target system and reconfiguring the model according to 
the seven-element framework, the enhanced CA model can be adapted to systems like transportation-communication networks or 
cyber–physical infrastructures. In addition, future research could further explore key factors influencing the resilience of the PWFS 
system, such as the number of supply units and the configuration of system redundancies, which would offer valuable insights for 
the resilience-oriented design of hospital PWFS systems.
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